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 Mass Integration

• Tool: Minimum Mass Utility Cost for Mass Exchanger Networks
with Fixed or Variable, Single Component Targets 

• Objective:

• Unit Operations: Mass Exchangers

•  Framework: Conservation of Mass
  1st and 2nd Laws of Thermodynamics
  Mass cascades from high to low chemical potential
  

•  Concepts: Mass Pinch Analysis, Composition Interval Diagrams,
                     Mass Exchange Diagram
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Minimum Mass Utility 2
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Cost:           $ 0.4159 /s

Mass Integration: Zinc Recovery - Metal Finishing Plant
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Mass Integration: Zinc Recovery - Metal Finishing Plant
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R (water) - S1 (Resin)  y = 0.376 (x+ε) + 0.0001, ε = 10 - 4

R (water) - S2 (Phosphate)  y = 0.845 (x+ε), ε = 10 - 4

  V     yi       yu     xi       xu       c
kg/s kg/kg kg/kg kg/kg   kg/kg    $/kg

R1   0.1     0.045   0.02 S1   0.0015  0.075   0.7
R2   1.5     0.03     0.001 S2     0.004    0.05     0.03

Rich Streams Lean Streams

Equilibrium Data

Input Output Data

Zinc Chloride

Mass Integration: System Data
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Cost:           $ 0.3960 /s

Flowrates:    L1 = 0.5615 kg/s
     L2 = 0.1028 kg/s
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Cost:           $ 0.3594 /s

     L14=L15=L16=L17= 0.5031 kg/s
Flowrates:    L22 = 0.1028 kg/s

     L23= L24= L25= 0.2396 kg/s

Mass Integration: Composition Interval Diagram

Mass Integration: Optimal Design

To
Regeneration

Rinse
Bath

Spray
RoasterAbsorber

Pickling
Bath

Rinse
Water
Makeup

S2

S1

S2

S1

Rinse
Water

Pickled Metal

Pickle
Solution

Metal
Workpieces

Spent Pickle Liquor

Water

Treated Rinse Water

Zinc-Free
Spent Solution

HCl

Hydrochloric
Acid

FeO, Fe2O3

R1

R1

R2

R2

Pickle
Solution
Makeup

1 2

3



7

 Multicomponent Mass Integration
• Tool: Minimum Mass Utility Cost for Mass Exchanger Networks

with Multicomponent Targets 

• Objective:

• Unit Operations: Mass Exchangers

•  Framework: 1st and 2nd Laws of Thermodynamics
  Infinite DimEnsional State Space (IDEAS)
  Conservation of Mass
  Mass cascades from high to low chemical
  potential for each component
  

•  Concepts: Composition Interval Diagrams, Mass Exchange
          Diagrams for Each Component
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Multicomponent Mass Integration: Example
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Multicomponent Mass Integration: Network Design

• Our recent results can identify minimum utility cost for the
multicomponent MEN problem

• Multicomponent Minimum Utility Cost $1.0/min
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Multicomponent Mass Integration Network Data

MEX y1
 i y1

o y2
 i y2

o x1
 i x1

o x2
 i x2

o M1 M2

1 0.024 0.024 0.042 0.002 0.006 0.006 0.000 0.021 0.000 0.0105

2 0.040 0.024 0.042 0.074 0.006 0.010 0.037 0.029 0.002 -0.0040

3 0.024 0.024 0.074 0.010 0.006 0.006 0.005 0.037 0.000 0.0160

4 0.024 0.024 0.010 0.002 0.006 0.006 0.001 0.005 0.000 0.0020

5 0.024 0.024 0.002 0.000 0.006 0.006 0.000 0.001 0.000 0.0005

6 0.024 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.006 0.0000
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Multicomponent Mass Integration:
Mass Exchange Diagrams

Component 1 Component 2
y1 x2y2
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Multicomponent Mass Integration:
First Component based Network Design

• Above network does not meet second component specifications for R1, R2

•

• Above network requires utility cost > $1.21/min to meet second component
specifications
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         Globally Optimal
      Distillation Networks
          Minimum Utility
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L1
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IDEAS Representation of Petlyuk Column

Employed assumptions:

Process is isobaric

MEX’s incorporate equilibrium plates

HEX’s do not result in mixed phase
streams
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Example:

Feed: 10 kg-moles/sec: 70 mole % N2, 
30% O2.

Distillate: 7.5 kg-moles/sec: 90% N2

Bottoms: 2.5kg-moles/sec: 90% O2

Constant relative Volatility: 4.173

Utility cost:

Hot utility: $105/MJ at 92oK

Cold utility: $1030/MJ at 76oK

Pressure: 1.013x105 Pa
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Two cases

Case 1: Feed and product streams at 78oK
(subcooled)

Case 2: Feed and distillate product are saturated
 vapor, and bottoms product is saturated

liquid 

Objective

           Determine the globally
             minimum utility cost
    for a given separation using IDEAS  
    and compare with a McCabe-Thiele 
                        design
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Distillation Efficiency, 0d

Minimum Work of Separation, Wmin

Difference of Gibbs Free Energy

Case 1

0d = 
|-Wmin|
|Wproc|

Work equavalent of heat (Carnot cycle)

Process work, Wproc

Wproc = Qproc

(Tproc - To)
To



16

Results -- Case 1

McCabe-    IDEAS    IDEAS
 Thiele          NR            R

Utility Use  (Wproc)       12.24        6.14       5.96

0d
‡       0.15        0.29       0.30

Cost ($/sec)                 79,800     39,700   38,800

        McCabe-Thiele design
Temperature composite diagram
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                 IDEAS Design
Temperature Composite Diagram
   Without Reverse Exchangers
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                 IDEAS Design
Temperature Composite Diagram
     With Reverse Exchangers
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    McCabe-Thiele design
Mass interval composite diagram
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                IDEAS design
mass transfer composite diagram
     without reverse exchangers
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                IDEAS design
mass transfer composite diagram
       with reverse exchangers
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IDEAS separation network

Feed
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         Globally Optimal
      Distillation Networks
      Minimum Plate Area 
      for Fixed Utility Cost

Case 2:

   Hot Utility                11.74           9.11           8.76

   Cold Utility    27.24          24.61        24.26

   Cost ($/sec)              29,300       26,300      25,900

McCabe-    IDEAS    IDEAS
 Thiele          NR            R
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Example:

Feed: 10 kg-moles/sec: 70 mole % N2, 
30% O2, saturated vapor

Distillate: 7.5 kg-moles/sec: 90% N2,
saturated vapor

Bottoms: 2.5kg-moles/sec: 90% O2
saturated liquid

Constant relative Volatility: 4.173

Pressure: 1.013x105 Pa

Utility prices:

Hot utility: $105/MJ at 92oK

Cold utility: $1030/MJ at 76oK

Total utility cost: $50,000/sec 
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Objective

           Determine the globally  
      minimum plate area for a given 
      separation and utility cost using  
        IDEAS and compare with a 
            McCabe-Thiele design
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FhF + QH = BhB + DhD + QC

U = cHQH + cCQC

McCabe-Thiele design

Determining heat loads
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D = 7.50

L0
V0

F = 10.00

B = 2.5

L = 4.63 V = 12.13

Q
C

Q
H

= 28.7

 = 2.13= 4.63

= 13.6

(L/V) = 1.33(L/V)min

        McCabe-Thiele design for
fixed total utility cost
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Results 

McCabe-    IDEAS    IDEAS
 Thiele          NR            R

Plate Area                   41.1            20.3           20.3

Total Utility Cost = $50,000/sec                          

         Globally Optimal
Reaction/Distillation Networks
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Motivation

• Reactor and Distillation networks impact
waste generation at two levels: Processing
and Recycling

• Design of such networks typically pursued
through convex and/or mixed integer
programs which do not guarantee global
optimality.

Infinite DimEnsionAl State-space (IDEAS)
 

States: Composition, Enthalpy

Infinite number of states

Distribution Network (DN): allows for stream mixing

Process Blocks (RXN, MEN, HEN) external to DN

Includes ALL possible designs

Convex Programs: Local optima are global
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IDEAS Representation of a Reaction/Distillation
                               Network

Reactor/Distillation Network Synthesis

?250K
10 kg-moles/hr
0.95 A
0.05 B

250K
10 kg-moles/hr
0.10 A
0.90 B

Determine the globally minimum utility cost over any
             complex reactor/distillation network
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Assumptions:
Process is isobaric at 5.875x105 Pa

MEX’s incorporate equilibrium plates

HEX’s do not result in mixed phase streams

States are feeds, products, saturated liquids/vapors

Local mixing

Reverse exchangers allowed

Constant relative volatility: 4.422; Chemical equilibrium constant: 1.7

Hot utility available at 92K for $105/MJ, cold utility at 76K for $1030/MJ

Reactors operate isothermally

Forward reaction is exothermal: ) Hr = -1.62-0.0027(T-298) MJ/kg-mole
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Reactor/Distillation Conventional Design Minimum Utility Design

Feed

   Feed
Preheater

Reactor
  Feed
Cooler Reactor

Condenser

Reboiler

Product
 Cooler

Product

Distillation
 Column

 4.66 kg-moles/hr
x   = 0.05
T = 354  KoB

 10.00 kg-moles/hr
x   = 0.05
T = 300  KoB

 10.00 kg-moles/hr
 x   = 0.90
 T = 300  KoB

 14.66 kg-moles/hr
x   = 0.63
T = 320  KoB

T = 320  Ko

T = 354  Ko

T = 312  Ko

T = 318  Ko

T = 358  Ko

Utility Cost:
$0.773/hr
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State-space representation of conventional 
                     optimal design
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Utility Cost: $0.365/hr
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Reactor/Distillation Network Synthesis

250K
10 kg-moles/hr
0.95 A
0.05 B

250K
10 kg-moles/hr
0.10 A
0.90 B

Determine the globally minimum linear total 
    annualized cost (TAC) over any complex  
            reactor/distillation network

?

Additional Assumptions:

Capital cost of plates linearly proportional to plate area = $50/m

Capital cost of reactors linearly proportional to reactor volume = $100/m

TAC is given by

TAC = Annual utility cost + (Total capital cost)/ (Project life)

Project life = 7 years

2

3
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Reactor/Distillation Conventional Design Minimum TAC Solution

 10.00 kg-moles/hr
x   = 0.05
T = 300  K

Feed

   Feed
Preheater

Reactor
  Feed
Cooler Reactor

Condenser

Reboiler

Product
 Cooler

Product

Distillation
 Column

o

 7.00 kg-moles/hr
x   = 0.05
T = 354  KoB

B

 10.00 kg-moles/hr
 x   = 0.90
 T = 300  KoB

 17.00 kg-moles/hr
x   = 0.55
T = 323  K

oB

T = 323  K
o

T = 312  Ko

T = 318  K
o

T = 358  Ko

T = 354  Ko

LTAC: $10,358
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41

Conclusions

Infinite DimEnsionAl State-space (IDEAS) process 
representation includes all possible processes

Resulting problem formulations are convex

IDEAS designs are flexible and may be used to represent
a wide variety of processes

For reaction/distillation networks, IDEAS designs have
lower utility cost and TAC than conventional 
designs
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